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Introduction 
THE electronic theory of chemical valency has to explain a set of facts and 
empirical rules some of which suggest an interpretation in terms of localised 
electrons and others require a picture of electrons spread throughout the 
whole molecule. In  the pre-electronic era a chemical bond was regarded 
as a genuinely local link joining neighborxring atoms in a molecule, and 
this was associated with a pa'ir of bonding electrons in the early electronic 
theory developed by Lewis and Langmuir. In  accounting for all the 
electrons some were assigned to atomic inner shells and others were supposed 
to form inert pairs (or " lone pairs ") on a single atom. The rules of stereo- 
chemistry implied certain restrictions about the geometrical arrangement 
of neighbouring bonds, but, apart from this, there seemed to be considerable 
evidence that the pairs of electrons in different bonds behaved independently 
to a large extent. For a great many molecules it was found possible to 
interpret heats of formation on the assumption that there was a definite 
energy associated with each type of bond (the bond energy). The refractiv- 
ity of a large molecule can usually be predicted by assuming that the total 
is a sum of standard contributions from the various atoms and bonds. 
Similar additive laws also hold for magnetic susceptibilities. All these 
facts, which imply the existence of a standard type of bond between two 
given atoms, are best interpreted in terms of a theory in which a pair of 
electrons is moving in localised orbits in each bond and is mainly independent 
of elect,ron pairs in neighbouring bonds. 

On the other hand, there are properties of molecules which do not seem 
to fit this picture. Consider the ionisation of (removal of an electron from) 
a simple molecule. According to the localised picture, we might expect 
this process to consist of the removal of an electron from one of the bonds, 
or possibly from one of the lone pairs. However, in the case of a molecule 
such as methane, where there are several bonds exactly equivalent to one 
another, there are various possibilities. There is no a priori reason why the 
electron should be removed from one bond rather than another and, in such 
circumstances, what actually happens is that the electron is removed partly 
from them all, or, an equivalent statement, the electron which is removed 
was moving in an orbit or path extending over the whole molecule. Similar 
situations arise when we consider the electronic excitation of a molecule. 
Methane being taken as an example again, instead of exciting the electrons 
in a single bond, an electron is taken out of one orbit spread over the whole 
molecule and placed in another excited orbit. It seems, therefore, that in 
order to interpret spectroscopic properties of molecules such as methane, 
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we ought to treat the electrons as moving in orbits extending over the whole 
molecule, processes such as ionisation and excitation corresponding to the 
removal or reallocation of electrons among these paths. Such a procedure 
is, in fact, a logical extension of the ideas originally used by spectroscopists 
to interpret atomic spectral lines and it has since proved its value in the 
theory of the electronic spectra of molecules. 

It appears, then, that there are two apparently divergent modes of 
description of molecular structure, localised electrons in bonds and lone-pair 
orbits on the one hand and electrons moving in orbits covering the whole 
molecular framework on the other. But the success of both descriptions 
in their respective fields of application is so considerable that the two must 
be more closely related than appears a t  first sight. When we consider the 
general quantum-mechanical problem of finding the distribution of electrons 
in a molecule we find that this is so and that the localised and delocalised 
pictures are just two different ways of breaking down the same total wave 
function describing the combined motion of all electrons. The purpose of 
this Review is to elaborate this transformation and show how it links together 
alternative descriptions of certain simple molecules. 

To do this we begin by considering the general properties that the wave 
function for the electrons in a molecule must possess. If we consider only 
one electron moving in the electrostatic field of the nuclei, then it is quite 
clear that its path or orbital must extend over the whole nuclear framework. 
Thus the electron in the hydrogen molecule-ion, HZ+, is equally distributed 
around both nuclei. When we come to systems of several electrons, how- 
ever, we also have to take into account the indistinguishability of electrons 
and, further, the all-important antisymmetry property of the wave-function. 
The way in which this is incorporated into the molecular-orbital theory is 
discussed in the next section and its consequences are then illustrated in 
terms of a simple one-dimensional model. In  the remaining sectioiis the 
transformation between the localised and delocalised descriptions is carried 
out for certain simple molecules. I n  this way we can see the relation between 
the bonding- and antibonding-orbital picture of a diatomic molecule such 
as F, and the alternative description in terms of lone pairs. The relation 
between the a-n and the two-bent-bond descriptions of the standard carbon 
double bond in ethylene also becomes apparent. Similarly a triple bond, as 
in nitrogen or acetylene, can be regarded as three equivalent bent bonds or 
as a 0 bond and two n bonds. 

Quantum-mechanical basis of orbital theories 
The basic quantum-mechanical problem is to  formulate the wave-like 

description of an electron moving in the electrostatic field of the nuclei 
and other electrons. If the potential energy of an electron a t  a point 
(x, y, x )  is V ( x ,  y, x ) ,  this is accomplished by solving the well-known 
Schrodinger equation for a wave function y(x ,  y, x )  
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where E is the energy of the electron and h and m are Planck's constant 
and the electronic mass respectively. (For many-electron systems some 
care has tlo be taken in obtaining the potential energy V for which a know- 
ledge of other electron distributions is required. The calculations have to  
be made self-consistent. The details are not relevant to the present topic, 
however, and we shall not go into them.) The function y which depends 
on the co-ordinates (x, y, x )  of the electron in space will be referred to as 
a space orbitaE or often just as an orbital. I ts  physical interpretation is that 
y 2  dxdydx represents the probability that the electron will be found in 
a small rectangular element of volume dx dy dz near the point (x, y, x ) .  
Thus y 2  is a probability density and the electron is most likely to be found 
where this density has its largest value. 

The other important property of an electron that must be specified 
besides its spatial distribution is its spin. According to quantum-mechanical 
arguments, into which we need not go in detail, each electron has a spin 
which can take one of two values. It is convenient to include this description 
in the wave function by defining a and /? so that a = 1 if the spin is in one 
direction and a = 0 if it is in the other. is defined in a complementary 
manner. Thus the electron moving in an orbital y(x ,  y, x )  may be associated 
with two functions y(x ,  y, x)a and y (x ,  y, x ) / 3  according to the direction of 
its spin. A function such as y(x ,  y, x)a which gives the probability distribu- 
tion of the spin co-ordinate as well as that of its spatial co-ordinates is 
sometimes referred to as a spin orbital. 

All this is very straightforward if we are dealing with a system which 
contains only one electron such as the hydrogen atom or the hydrogen 
molecule-ion H,+. But when we consider a many-electron molecule we 
are faced with the problem of combining the orbitals for the individual 
electrons into a total wave function for the whole system. Suppose we are 
dealing with two electrons which occupy space orbitals yl and y2 .  The 
simplest compound wave function for both electrons is the product 

ypl'OdUCt = %(xl, x1)w2(x29 y2, '2) ' (2) 
where (xl, yl, x l )  and (xz, y2, x 2 )  are the Cartesian co-ordinates of electrons 
1 and 2 respectively. To be complete this should be multiplied by one of 
the four possible spin functions a( 1)a(2), a( 1)/3(2), a(2)/3(1), or /?(l)P(Z). 
The physical interpretation of this compound wave function is again in 
terms of probability. Y2 is now proportional to the joint probability of 
electron 1 being at position (xl, yl, xl) and electron 2 a t  position (x2,  y2, x 2 )  
sinzultaneously. If the product form is used this is just the product of the 
two separate probabilities. Thus the product wave function implies that 
the two electrons move independently of one another. 

Product wave functions can clearly be constructed for any number of 
electrons. Early wave functions were constructed on this basis together 
with the empirical rule that not more than two electrons could be assigned 
to a single orbital, one of each spin. Further, electrons tend to occupy 
the orbitals with lowest possible energy in the absence of other factors. 

The major disadvantage of the product function is that it fails to satisfy 
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another important quantum-mechanical principle, namely that of anti- 
symmetry. This is really a consequence of the indistinguishability of 
electrons. If we consider the operation of interchanging the positions of 
two electrons the probability of the new configuration must be just the 
same as previously. Thus the square of the total wave function must be 
unaltered, and consequently the wave function itself can only be multiplied 
by 4- 1 or by - 1. It is found that the second choice is demanded for 
electrons so that we formulate the antisymmetry principle by requiring 
that the wave function changes sign if we interchange the co-ordinates of 
any two electrons. Clearly the product function (2) does not satisfy this 
condition, for if we interchange thc co-ordinates of electrons 1 and 2 we 
obtain yI(xz7 y2, x2)y2(xl, yl, xl) which is not a direct inultiple of its previous 
form. 

The next step is to construct a wave function from products of the 
type (2) which satisfies this further condition. This can be done in terins 
of what is called an antisymmetrised poduct .  Let us consider, first of all, 
the case of two electrons in the same space orbital y1 with two different 
spins. 

The nntisymmetrised product is obtained by subtracting from this the 
corrcsponding product with the suffixes 1 and 2 interchanged. This gives 

The factor ( l / d Z )  is inserted so that the total probability added over all 
configurations is unity. This function may be said to be symmetric in the 
space co-ordinates but antisymmetric in the spins. Por an overall inter- 
change it is antisymmetric. 

Next, suppose we have two electrons in different space orbitals y1 and 
y2 but with the same spin a. 

and the antisymmetrised product constructed in the same way is 

Both the antisymmetric functions (4) and (6) can be written as 2 x 2 deter- 
minants. Thus (4) is 

The simple product function is 

y1(x17 y1, z1)'~1(x27 y27 '2)a(1)P(2) * - (3) 

(1/d2)y1(x17 y17 "1)y1(x27 yZ7 '2) ('(')p(') - a(2)p(1)) ' * (4) 

Then the simple product function is 

y1(x17 Y1, x1)y2(x27 y2, x2)'(')a(2) * * (5 )  

(1/d2){v1(x1y y19 '1)w2(x27 Y27 '2) - y1(x27 y27 x2)y2(x17 !/I7 '1)}a(1)a(2) (6) 

and (6) is 

Here we have written yl(l) as a short form of y1(xl, y17 xl). 
These simple determinantal functions for two electrons suggest that we 

can construct antisymmetric wave functions for any number of electrons 
in a similar manner. Thus if we have a set of orbitals yI, y2 . . . yn eacH 
containing two electrons, one of each spin (this applies to most molecules), 
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an antisymmetric wave function can be constructed as a determinant with 
a different spin orbital in each row. 

* I  I . . . . . . . . . . . . . . 
I 
1 Yn(l)rB(U Yn(2,P(2) * - - y,(24B(W 1 

The interchange of the co-ordinates and spins of two electrons corresponds 
to interchanging two columns of this determinant. This leads to a change 
of sign, so that the antisymmetry property is satisfied. This type of total 
wave function is that used in molecular-orbital theory. 

Another well-known property of determinants is that they vanish if 
they have two identical rows. This means that it is not possible to 
construct a non-vanishing antisymmetrised product in which two electrons 
in the same orbital have the same spin. Thus the rule that not more than 
two electrons must be assigned to any one space orbital follows as a direct 
consequence of the antisymmetry principle ; for product wave functions it 
had to be introduced as an extra postulate. 

Another important physical interpretation of the molecular-orbital deter- 
minant follows from an application of a similar argument to the columns. 
The elements of two columns become identical if two electrons have the same 
spin (a or p)  and are a t  the same point (x, y, x ) .  The determinant then 
vanishes and consequently the probability of such a configuration is zero. 
Such an argument does not apply to electrons of different spin, however. 
The antisymmetry principle operates, therefore, in such a way that electrons 
of the same spin are kept apart. We shall see in later sections that this 
is an important factor in determining stereochemical valence properties. 

The antisymmetry principle is also of great importance in understanding 
the dualism between localised and delocalised descriptions of electronic 
structure. We shall see that these are just different ways of building up 
the same total determinantal wave functi0ns.l This can be developed 
mathematically from general properties of determinants, but a clearer 
picture can be formed if we make a detailed study of the antisymmetric 
wave function for some highly simplified model systems. 

Simple models illustrating the effects of antisymmetry 
The simplest system that can be used for illustrative purposes is one in 

which electrons are free to  move in one dimension along a wire of length 1. 
The potential energy will be constant and can be taken as zero. If the 
position of a point on the wire is measured by the distance x from one end, 
the Schrodinger equation is 

h2 d2y 
8n2m dx2 -Ey . - - _ _  _. 

1 Lennard-Jones, Proc. Roy. SOC., 1949, A,  198, 1, 14. 
S* 
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where E is the energy. 
has the general solution 

This is just the simple harmonic equation which 

y = A sin (J(E)") 8n2mE -i- B cos {Jo.>. 8n2mE . (11) 

where A and B are constants of integration. The wave function must also 
satisfy the boundary conditions of being zero a t  both ends (that is a t  x = 0 
and x = I ) .  The first condition requires that B = 0 and the second that 
.\/(8n2mE/h2)E is an integral multiple of n. The lowest orbitals thatv 
electrons ca.n occupy (those with least nodes) are therefore 

yl = 2/(2/Z) sin (nz/Z) 

y, = 2/(2/Z) sin (2nx/I)  . ' (12) 
y1 is positive over the whole length of the segment while y2 is zero a t  the 
centre of the wire (Fig. 1). 

FIG. 1 
Lowest occupied molecular orbituls in model syqtem. 

Now suppose two electrons are placed one in each of these orbitals. 
The distribution of these electrons in their individual orbitals will simply 
be given by y12 and y22.  If we wish to examine the probability of various 
simultaneous positions of the two electrons, we have to consider the total 
wave function Y, which will be an antisymmetric product with a form 
depending on the spins of the electrons. If  we wish to investigate the 
effect of the antisymmetry principle on the spatial arrangement of the 
electrons, it is convenient to examine the case in which they both have 
the same spin a. Then the wave function will be of the form given in 
equations (6) and (8). If the factor cc(l)cc(2) is omitted, 

= (4/Z) sin (nx,/Z) sin (nx2/Z) (cos (nxl/Z) - cos (nx2/Z)} . - (13) 
Y2 is then proportional to the probability of electron 1 being found a t  
position x1 and electron 2 a t  x2.  The significant points to be noted are 
(1 )  that if x1 =: x2  the wave function vanishes so that the configuration has 
zero probability and (2) that there are two equivalent most probable con- 
figurations in which the electrons are in different halves of the wire. These 
two configurations differ only in the numbering of the electrons and are 
otherwise indistinguishable. 
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antisyinmetrised wave function instead of an 
ordinary product, therefore, is to cause the electrons to move in two different 
regions in the two halves of the segment, the probability of configurations 
in which both are in the same segment a t  the same instant being relatively 
small. This suggests that the system could be alternatively described in 
terms of two localised orbitals, one in either segment with one electron in each. 

This alternative description in terms of localised orbitals can indeed be 
set up by taking linear combinations of the orbitals y1 and yz and using 
these in the determinant instead. If the linear combinations are suitably 
chosen, the value of the determinant is unaltered, although t'he individual 
rows change. Let us consider, therefore, how we can construct localised 
orbitals f roa  our two starting orbitals y1 nnd y2.  As we have already 
noted, yl is positive everywhere while y2 is positive in the left-hand part 
of the segment and negative in the right. If we consider yl + y2 ,  the two 
components will add on the left, but partly cancel on the right. This, 
therefore, can be used as a localised orbital mainly concentrated in the 
left-hand part. Similarly y1 - y2 is mainly concentrated on thc right. 
We therefore define two new localised orbitals xa and x b  by 

' (14) 

The effect of using 

xa = (yl + y2)/2/2 = 2/(4/1) cos (nx/22) sin (3nx/21) 
X b  = (yl - y 2 ) / 2 / 2  = d(4/Z) sin (nx/2Z) cos (3nx/21) 

* 

The factor ( l / d 2 )  is included to keep the total probability equal to unity. 
These funcbions are illustrated in Fig. 2. They are mirror images in the 

FIG. 2 
Equiualent orbitals in ,model system. 

mid-point of the line-segment. They are sometimes called equivalent 
orbitals.l, 

The total wave function can now be written in terms of the equivalent 
orbitals 

(15) 

If we substitute for xa and xb and expand the expression, it is easily confirmed 
that the value of this determinant is identical with the original t,otal wave 
function (13). This is a particular example of what is known as an ortho- 
gonal transformation of the rows of the determinant. 

It appears, therefore, that we have two possible descriptions of this 
system. We can describe it as two electrons, each of which occupies one 
of the delocalised (or molecular) orbitals which are solutions of the 

2Lenanrd-Jones and Pople, Proc. Roy. SOC., 1950, A ,  202, 166. 
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Schrodinger equation. Or alternatively, we may say, equally accurately, 
that the two electrons occupy two localised orbitals xa and X b ,  one a t  each 
end of the segment. These are just two different ways of interpreting the 
same total wave function. 

If we are 
interested in the relative positions of the two electrons, then the interpreta- 
tion in terms of localised orbitals gives a clearer description of the qualitative 
features of the overall probability distribution. On the other hand, if we 
are interested in the removal of an electron, the first description is more 
appropriate, for the remaining electron must occupy an orbital which is 
a solution of the original Schrodinger equation. Thus the electron must 
be removed from yl or y,. 

This sort of model can easily be generalised to deal with more than two 
electrons and other assignments of the spins. The case of most interest 
in molecular studies is that in which a set of molecular orbitals are all 
occupied by two electrons. Thus if there were two electrons, one of either 
spin, in both orbitals yl and y2, the total wave function would be a 4 x 4 
determinant. But most of the features of the two-electron model are 
retained. The system could be alternatively described as consisting of two 
electrons in each of the equivalent orbitals. The effect of the antisymmetry 
principle is then to keep electrons of the same spin apart, the motion of 
the two opposite spin-types being uncorrelated. 

Although the one-dimensional model bears little resemblance to any real 
molecular system, many of its features carry over to cases of practical 
interest. Suppose we consider three-dimensional motion in a central field 
as in atoms. The orbitals or single-electron functions now become atomic 
orbitals and can be classified in the usual manner as Is, 28, . . . 2p, 3p, 
. . . 3d, . . . Suppose we are dealing with an atom in which there are 
two electrons of the same spin (a, say) occupying the 2s and 2p orbitals 
(inner shells being ignored for the present). Then the antisymmetric product 
function is 

The two descriptions are useful in rather different contexts. 

This wave function has many €eatures in common with t,hat of the previous 
model. While yZs is spherically symmetric, yZP has a nodal plane through 
the centre of symmetry. A similar transformation can be applied and we 
can use two equivalent orbitals 

Atomic orbitals of this mixed type are usually referred to as hybrids (or 
more specifically digonal s-p hydrids). As with the one-dimensional model, 
they reinforce on one side of the nucleus and partly cancel on the other. 
Hence the transformation is from the delocalised s and p description to 
a description in terms of two equivalent orbitals, localised on opposite sides 
of the nucleus. Again a similar transformation may be applied to a 4 x 4 
determinant describing a system with two electrons in each of these orbitals. 
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For the next example, consider a system of three electrons of the same 
Here the antisymmetric spin occupying atomic orbitals 28, 2px, and 2py. 

wave function is 
1 ~ 2 ~ ( 1 )  ly2,(2) ly2,(3) I 

!P= ~ ~ t ) $ & )  y2,,(2) y2,,(3) ~ 

wZPx(2> y2Dx,(3) 4 1 ) 4 2 ) 4 3 )  - (18) 

In  this case we can transform these into three equivalent orbitals which 
are 8-p hybrids (called trigonal hybrids) pointing towards the vertices of 
an equilateral triangle, so that the angle between neighbouring directions 
is 120". The actual transformation is 

x1 = d ( 1 / 3 ) ~ 2 ~  + d ( 2 / 3 ) ~ ~ ~ ~  
x 2  = d(1/3)wZs - . \ / ( 1 / 6 ) ~ ~ ~ ~  + 2/(Wv)2py a * (19) 
x3 = 2/(1/3)wZs - d ( 1 / 6 ) ~ ~ ~ ~  - d(1/2)wZPv 

It is not immediately clear from the form in which these are written 
that they are equivalent functions, that is, differ only in their orientation, 
but it is easily confirmed that they do transform into each other if the 
axes are rotated through 120". Again it can be shown that the determinant 
of X-functions has the same value as (18). One other point about this set 
of equivalent orbita'ls is that there appears to be no preferential direction 
in which any one of the vertices of this triangle may be chosen. The choice 
is, in fact, arbitrary and any set of three equivalent directions perpendicular 
to the x direction would suffice. This only applies for an atomic wave 
function, of course. In  molecules (such as planar XY,) there may be 
a preferred choice of axes on account of symmetry. This will be clear from 
some examples considered in the next section. 

The case of four electrons in the atomic orbitals 28, 2px, 2py, and 2px 
can be handled in a similar manner. Here we can transform the expression 
into four equivalent orbitals given by 

x1 = %W2s + y2m -t- 
x 2  = %Wzs + W2DX - 

3 - d w 2 s  - W Z P X  + x -1 
4 - d W 2 S  - W Z P X  - 

- 1. 

W 2 P Y  + W 2 P t )  

Y2DY - Y 2 P Z )  

Y2PY - Y Z P J  

Y2PY + Y 2 P Z )  

which are directed towards the vertices of a regular tetrahedron. These 
equivalent orbitals are usually called tetrahedral s-p hybrids. If we have 
eight electrons (two of each spin in each orbital) this description can be 
applied directly to the outermost shell of electrons in the neon atom. The 
neon atom is not usually described in terms of localised tetrahedral orbitals, 
but such a description is just as valid as the more conventional s2p6. We 
shall see in the next section that the localised picture is useful in discussing 
the structure of molecules isoelectronic with neon. 

The orbital description of molecules 
We now turn to the description of actual molecules in terms of molecular 

The usual procedure is to find orbital functions yl, ly2, . . . which orbitals. 
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are solutions of a suitable Schrodinger equation, assign the electrons in 
pairs to those orbitals of lowest energy, and then construct an antisymmetric 
determinantal wave function [as in eqn. (9)]. We can then consider possible 
alternative descriptions obtained by transformations of the rows of the 
determinant as with the models of the previous section. 

In  the complex electrostatic field of a molecule, it is usually inipractjicable 
to obtain accurate molecular orbitals, so it is customary to express them 
approximately as linear combinations of atomic orbitals belonging to the 
constituent atoms. This is called the “linear combination of atomic 
orbital ” or LCAO form. Although they are only approximate, the LCAO 
functions do show most of the properties of the precise orbitals Both 
molecular and localised equivalent orbitals can be expressed in this 
manner. 

Diatomic Molecules.-We shall begin by discussing diatomic molecules, 
which bear some relation to the models discussed in tthe previous section. 
To begin with, the hydrogen molecule has two electrons which both occupy 
the lowest molecular orbital whose LCAO form is 

y1 = A(1sA + Is,) * (21) 
IsA and lsB are the two hydrogen 1s atomic orbitals. The factor A is 
introduced so that the total probability adds up to unity. If the overlap 
between the atomic orbitals is small, A is approximately 1 / 4 2 .  Since 
there is only one space orbital in the determinantal wave function [eqn. (7)] 
no transformation of the orbitals is possible. 

If we now go to a pair of interacting helium atoms, there will be four 
electrons of which the first pair will go into the corresponding orbital yl 
and the second pair into the next lowest orbital for the system whose LCAO 
form will be 

This function is zero for all points equidistant from the two nuclei (that is, 
it has a nodal plane). The orbital y1 is large in the region between the 
nuclei (where lsA and lsB overlap and the electrostatic potential is low) 
and is generally referred to as a bonding orbital. Similarly, y2 ,  which keeps 
its electron away from the internuclear region, is antibonding. The two 
functions y1 and y, are malogous to the symmetric and antisymmetric 
orbitals for the one-dimensional model. A similar transformation can be 
applied and two equivalent orbitals constructed. 

y2 = pu(ls* - 1ss) * (22) 

These are 

If the overlap of the functions is not large, 3, and ,u are both nearly 
1 / 4 2  and so the equivalent orbitals approximate to the atomic orbitals 
for the isolated atoms. The complete equivalence of the two configurations 
y2bondingy2Santibonding and xA2xB is the simplest example of the dual descrip- 
tion of a molecular system. 

Proceeding further along the series of homonuclear diatomic molecules, 
the 1s inner shells can still be described in either manner. Since the 1s 
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electrons do not play any appreciable part in bonding, it is usually most 
convenient to treat them as localised. The lithium molecule Liz can be 
described in terms of a pair of inner shells and a bonding orbital which is 
similar to that in H,. There is a difference, however, in that there is now 
a possibility of appreciable hybridisation between the 2s and Zp atomic 
orbitals which have comparable energies. The best LCAO representation 
of the bonding orlital will be a sum of two hybrid orbitals of the form 

4 2 4  + B(2po) 
where 2po represents an atomic 2p orbital with its axis along the internuclear 
line. Again, since this is the only occupied orbital formed from valence 
shell atomic orbitals, no transformation to localised orbitals is possible. 

Proceeding further along the Periodic Table, let us next consider the 
nitrogen molecule N,. Here we have to consider molecular orbitals con- 
structed from all the 2p functions for each atom. (The 2p orbitals with 
axes perpendicular to the molecular axis are usually called 2pn functions.) 
To begin with, four electrons are assigned to the inner shells, represented 
by equivalent orbitals Is, and Is,. Secondly, there will be two molecular 
orbitals, bonding and antibonding, fornied from the next s orbitals, 28, 
and 28,. These can be transformed into two equivalent orbitals in a similar 
manner and correspond t o  lone-pair or inert electrons. Then there will be 
a bonding orbital formed from 2po functions 

yo-bonding = (1/ 'd2)(2poA + 2PoB) - (24) 
and two bonding orbitals whose LCAO forms are sums of' the 2pn atomic 
orbitals 

If two electrons are assigned to each of these orbitals, all fourteen in the 
molecule are accounted for. This set of orbitals would be slightly modified 
if hybridisation between the 2s and 2po electrons is allowed. 

This description of the triple bond represents it as an axially symmetric 
CT bond together with two perpendicular n bonds. This is appropriate for 
spectroscopy and must be used if we are discussing excited N, or N,+. 
But for N, in its ground state, another description in terms of three equivalent 
bonding orbitals can be obtained by applying the trigonal transformation 
to (24) and (25). Thus if we write 

1 1 1 
X3-bonding rL --- ,3Yo-bonding + -pjYn2-boiiciing -- -- d 2 n y - b o n d i n g  

2 
the three new orbitals will be turned into one another by a rotation through 
120" about the axis of the molecule. They represent three bent bonds 
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concentrated in three different azimuthal planes, 
and add to get the total electron density 

this is found to be axially symmetric. Nevertheless, the existence of the 
three equivalent orbitals implies that the pairs of electrons dibpose them- 
selves relative to each other in such a way that their distributions are similar 
and interrelated by a 120" rotation. 

Although the nitrogen molecule represents the standard type of triple 
bond, the bond in 0, is in no way typical of a double bond. There are 
two extra electrons and the next orbitals t o  be filled are the antibonding 
n orbitals 

If we square the orbitals 

p = (Xl-bonding)' + (3d2-bondiiig)2 + (XS-bonding)2 

(27) 
Yn.x-antibonding = (1/ 'd2)(2PnxA - 2pnx.15) 
Yny-antibonding = (1/ 'd2)(2PnYA - 2pnYB) 

These both have the same energy so that, in the absence of other determining 
factors, the electrons go one into each with the same spin (or an equivalent 
state). This means that they are kept apart by the antisymmetry principle 
and so the energy is lowered by the reduction of Coulomb repulsion. In  
this rather exceptional case, therefore, the orbitals are not all doubly 
occupied and we cannot carry out any simple transformation into localised 
orbitals. 

If we now proceed further to the fluorine molecule, both the n-antibonding 
orbitals will be doubly occupied. As with the s functions, the configuration 
(vnr-borlding) '(Ynr-nntibOnding) can be transformed illto two n-lone-pair orbitals, 
one on each atom. The localised description 
of F,, therefore, has four localised n-lone-pairs, there being only one single 
bonding orbital. 

Molecules Isoelectronic with Neon.-Another set of molecules whose 
structure is typical of many standard cheniical environments is the set of 
ten-electron first row hydrides Ne, HP, H20, NH,, and CH,. On p. 281 we 
saw how the outer electrons of the neon atom could be described either as 
being in the configuration ( 2 s ) 2 ( 2 p ) 6  or, alternatively, as occupying four 
tetrahedral orbitals xl, x,, x3,  and x4 orientated relative to one another 
in a tetrahedral manner, the orientation of the tetrahedron in space being 
arbitrary. The electronic structures of the other molecules of the series 
can now be discussed in terms of this basic system if we imagine unit positive 
charges to be removed successively from the nucleus. 

If a single positive charge is removed to give HF, a preferred direction 
is established and the orbitals have to be referred to the internuclear line. 
Suppose we take this as the x axis. The orbitals will be somewhat distorted 
but their general arrangement will not be radically altered. One of the 
four localised neon orbitals will be pulled out into a localised bonding 
orbital ; it can probably be expressed fairly accurately in the LCAO form as 

Similarly with the ny orbitals. 

where A, p, and Y are numerical coefficients. This is a linear combination 
of an s-p hybrid on the fluorine atom directed along the x axis and the 
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1s hydrogen orbital (Fig. 3). The ot,her three neon-like localised orbitals 
will not be distorted as much, so they will remain as three equivalent 
tetrahedral hybrids pointing in directions making an approximately tetra- 
hedral angle with the bond. It is 
interesting that the most important lone-pair direction (where the negative 
charge is most likely to be found) may not be directly at the back of the 
fluorine atom. As the lone-pair electrons play an important role as the 
negative end of hydrogen bonds, this is probably closely connected with 
the non-linear structure of hydrogen fluoride polymers. 

The molecular-orbital description of HF can be obtained if we note 
that the three equivalent lone pairs can be obtained from a cr orbital and 
two n orbitals by a transformation similar to that used for obtaining the 
bent-bond description of N,. In  the LCAO form the u lone pair will be 
another s-p hybrid and the two lone pairs will be (Z(P,C)~ and (Zpy),. It is 
generally found that x lone pairs are less firmly bound than o lone pairs 
so that the lowest ionisation potential would correspond to the removal 
of an electron from one of the last two orbitals. 

We can now consider the structure of the water molecule by supposing 

They are three equivalent lone pairs. 

v 

x60ndh9 

FIG. 3 
Locnlised orbilals for hydrogen Jlzcoride. 

a further positive charge removed from the nucleus. The locslised descrip- 
tion gives some insight into the reason for the iion-linear structure. Giveq 
that one positive charge has been removed, as in HF, the second charge 
will prefer to be pulled out in the directions where the remaining electrons 
are most likely to be found. As we have seen above this is in a direction 
a t  an approximately tetra?hedral angle to the first bond. In  the localised- 
orbital picture, therefore, the outer electrons of the water molecule occupy 
two sets of two equivalent orbitals. The first two are bonding orbitals 
concentrated mainly along the O-H bonds, and the other two are localised 
lone pairs which point in two equivalent directions towards the back of 
the molecule, above and below the plane of the nucIei.3 

Once again this is. a very useful description for understanding molecular 
interaction. The normal form of the ice crystal, for example, is held 
together by hydrogen bonds in such a way that each molecule is surrounded 
tetrahedrally by four  other^.^ This is completely consistent with the 
electrostatic theory of the hydrogen bond according to  which a proton is 

Pople, PTOC. Boy. SOC., 1950, A ,  202, 323. 
Barnes, ibid., 1929, A ,  125, 670. 
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attracted by a localised lone pair of electrons on another molec~le .~  There 
is also considerable evidence that this structure persists to a large extent 
in the liquid.6, 7 

To deal with the molecular orbitals for water it is useful to examine the 
effect of certain symmetry operations on the molecule. We choose a set 
of rectangular Cartesian axes (Fig. 4) so that the x axis bisects the angle 
between the bonds and the x axis is perpendicular to the nuclear plane. 

4 
I X 

FIG. 4 
Cartesian axes for the water molecule. 

Then we can classify the molecular orbitals according to whether they are 
antisymnietric or not in the planes of symmetry. These are Oxy and Oxx. 
The molecular orbitals are summarised in the Table, together with LCAO 
forms. 

TABLE. Molecular orbitals for  the water molecule. 

Symme try 

y1 Totally symmetric . 
y 2  Totally symmetric . 

y 3  Antisymmetric in plane 

y4 Totally symmetric . 
y5 Antisymmetric in plane 

0 x 2  

O X Y  

Description LCAO form 

Oxygen inner shell 
Symmetric bonding orbita 

Antisymmetric bonding 

Symmetric lone pair 
Antisymmetric lone pair 

orbital 

( W o  
Mixture of oxygen hybrid 

of (2s)o and (2pz)o with 

Mixture of oxygen ( 2 p ~ ) ~  

Hybrid of ( 2 ~ ) ~  and ( 2 9 1 ~ ) ~  
(21740 

( 1 S ) H  f (1s)H' 

with ( 1 ~ ) ~  - (Is), 

The localised equivalent orbitals are connected with these by the 
transformations 

It is interesting that the molecular-orbital functions give an alternative 

Lennard-Jones and Pople, Proc. Roy. SOC., 1951, A, 205, 155. 
Bernal and Fowler, J .  Chem. Phys., 1933, 1, 515. 
Pople, Proc. Roy. SOC., 1951, A, 205, 163. 
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description of the lone-pair electrons which still distinguishes them from 
bonding electrons. There are two distinct lone-pair molecular orbitals, one 
of which, y4, is an s-p hybrid on the oxygen atom directed along the negative 
x-axis, that is, backwards along the line bisecting the two O-H bonds. 
The other (y5) is antisymmetric in the €€OH plane and approximates to 
an atomic 2p-function. This is the orbital of lowest energy for the water 
molecule and corresponds to the lone-pair electron removed in the first 
ionisation process. 

The structure of ammonia, the next molecule in the series, can be con- 
sidered in a similar manner. If a further unit positive charge is removed 
from the nucleus in H,O, the most favourable direction energetically will 
be towards one of the localised lone pairs. The ammonia molecule, there- 
fore, will have a tetrahedral-like structure with three equivalent localised 
bonding orbitals and a hybrid lone-pair orbital in the fourth direction. 
The three bonding orbitals can be transformed into three delocalised orbitals, 
but here the lone pair is already symmetrical and approximates to a molecular 
orbital. It is interesting to consider the behaviour of the lone pair during 
the inversion of the molecule (this is known to occur with relatively high 
frequency). In the equilibrium configuration, the orbital is close to a tetra- 
hedral s-p hybrid. As the molecule flattens, the amount of s character 
decreases until, in the intermediate planar configuration, the lone-pair 
orbital is a pure p function. After passing through this position, s character 
reappears, causing the lone pair to project in the opposite direction. 

The final molecule of this series is methane, the tetrahedral structure 
of which follows if a fourth unit positive charge is removed from the nucleus 
in the ammonia lone-pair direction. There are now four equivalent bonding 
orbitals, which may be represented approximately as linear combinations 
of carbon s-p hybrid and hydrogen 1s functions. The transformation from 
molecular orbitals into equivalent orbitals or vice versa is exactly the same 
as for the neon atom. 

Molecules with Multiple Bonds.-The double bond in a molecule such 
as ethylene provides a striking example of the transformation between 
equivalent and molecular orbitals.8 The nuclear configuration of ethylene 
is known to be planar, so the molecular or symmetry orbitals can be divided 
into two classes according to  whether they are symmetrical or antisym- 
metrical in this plane. By analogy with the classification for diatomic 
molecules, these are referred to as cr and n orbitals respectively. If we 
ta'ke the z direction to be normal to the plane, the LCAO forins of the 
cr molecular orbitals (apart from the carbon inner shells) will be constructed 
from the hydrogen 1s and carbon 28, 2px, and 2py atomic orbitals. The 
only low-lying n atomic orbitals are 2px. Two types of transformation are 
possible. In  the first place, the CT orbitals may be transformed among 
themselves, so that all orbitals will retain the property of symmetry or 
antisymmetry in the nuclear plane. The occupied CJ molecular orbitals 
could be transformed in this way into a set of localised CT orbitals which 
correspond to bonds of single axially-symmetric type. There will be five 

Lennard-Jones and Hall, Proc. Roy. SOC., 1951, A ,  205, 357. 
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in all, four local C-H bonds and one C-C bond whose LCAO form will be 
approximately 

where tr, and tr, are trigonal s-p hybrids. 
will occupy the n-bonding orbital 

which will be antisyminetric in the nuclear plane. 

wC-C a-bond = (1/2/2)(trA + trB) - - (30) 

VC-C n-bond = ( 1 / d 2 ) ( z p z A  $- 2pzB) * - (31) 

The remaining two electrons 

These two orbitals 

o-- bond n -bond 
FIG. 5 

a and rr Bonding orbitals in ethylene. 

constitute the 6-n representation of the double bond (Pig. 5). 
carry out a further transformation by writing 

If we nou- 

we get two equivalent orbitals, concentrated one above and one below the 
plane. This description corresponds to two bent bonds (Fig. 6). Each 
carbon atom takes part in four bonds in directions which are approximately 
tetrahedral, two being bent round towards the other carbon atom. 

F I G .  6 
Equivalent or bent bonding orbitals in ethylene. 

Actually the HCH bond angle in ethylene is rather larger than the 
tetrahedral value. According to the equivalent-orbital picture, this can he 
attributed to the closing up of one pair of bonds leading to the opening of 
the other pair. 

The carbon-oxygen double bond in aldehydes and ketones is similar and 
can be described in either of these two ways. If we adopt the localised- 
orbital description, formaldehyde will have two directed lone pairs in place 
of two of the C-H bonds in ethylene. In  this case the axes of these hybrid 
orbitals will be in the molecular plane (unlike the oxygen lone pairs in water). 
Either $he components of the double bond or the lone pairs can bz trans- 
formed hack into symmetry forms. The alternative description of the lone 
pairs would be one a-type dong the C-0 direction and one n-type with 
axis perpendicular to the C-0 bond but in the molecular plane. It is the 
latter orbital which has the highest energy, so that an electron is removed 
from it in ionisation or excitation to the lowest excited state. 
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The carbon-carbon triple bond in acetylene can be treated in a similar 
way to  that in the nitrogen molecule.8 The details of hybridisation may 

H' 
FIG. 7 

Equivalent lone pairs in  formaldehyde. 

differ somewhat, but there will be a C-C 0 bond and two perpendicular 
C-C n bonds. The alternative description is in terms of three equivalent 
bent bonds. The triple bond in hydrogen cyanide HCGN is similar. 

Resonance and Conjugation.-All the molecules described so far have 
been simple ones which can be described in terms of a single classical 
valence structure. For such systems we have seen how the molecular- 
orbital wave function can be expressed in terms of a set of localised equivalent 
bonding orbitals, each such orbital corresponding to a chemical bond or 
to a lone pair of electrons. I n  many more complex molecules, it is generally 
recognised that a single valence structure is insufficient and that the ground 
state should be represented as a mixture of several structures. This raises 
the question of what happens to  the localised bonding orbitals when such 
mixing occurs. 

This can be illustrated by the & electrons of buta-1 : 3-diene as an 
example (inset). This molecule is planar and its principal 
structure has two ethylenic-type double bonds. The correct /y[4 
equivalent-orbital description of this structure would be in 
terms of two localised bonding orbitals 

where $1, +2, $,, and +4 are the Zpn atomic orbitals. The corresponding 
symmetrical orbitals are obtained by taking the sum and difference of 
these two : 

Now actual calculations based on a simple model of a hydrocarbon such as 
this suggest that these molecular orbitals are better approximated by 

The equivalent orbitals corresponding to these are obtained by applying 
the reverse transformation and are 
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Thus it appears that the best equivalent orbitals in this molecule are not 
completely localised in the two double bonds but are to some extent distri- 
buted over the whole system. This failure to obtain localisation is the 
molecular-orbital analogue of resonance between valence structures. 

Discussion 
The main result that emerges from the discussions of particular cases is 

that it has proved possible to give a description of a molecule in terms of 
equivalent orbitals which are approximately localised, but which can be 
transformed into delocalised molecular orbitals without any change in the 
value of the total wave function. The equivalent orbitals are closely 
associated with the interpretation of a chemical bond in the theory, for, in 
a saturated molecule, the equivalent orbitals are mainly localised about two 
atoms, or correspond to lone-pair electrons. Double and triple bonds in 
molecules such as ethylene and acetylene are represented as bent single 
bonds, although the rather less localised 0-TC description is equally valid. 

Another property of these equivalent orbitals is that they include in 
themselves effects of delocalisation. Such effects are most important in 
conjugated molecules, although they are present in all molecules to a greater 
or lesser extent. In  a highly conjugated system such as benzene only 
a limited amount of localisation can be achieved by transforming the 
orbitals. 

For large molecules, the equivalent-orbital analysis is the most con- 
venient starting point for a molecular-orbital treatment. In  a molecule 
such as a long-chain paraffin it is possible to write approximate equivalent 
orbitals corresponding to each bond and then to apply a transformation to 
obtain the delocalised molecular orbitals. Simple assumption about the 
interaction of neighbouring bonds will then lead to estimates of the relative 
stability of the various energy levels.g 

Hall, Proc. Roy. Soc., 1951, A ,  205, 541. 


